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Portable Data-Parallel Visualization and Analysis in Distributed
Memory Environments

Category: Research

Abstract—Data-parallelism is a programming model that maps well to architectures with a high degree of concurrency. Algorithms
written using data-parallel primitives can be easily ported to any architecture for which an implementation of these primitives exists,
making efficient use of the available parallelism on each. We have previously published results demonstrating our ability to compile
the same data-parallel code for several visualization algorithms onto different on-node parallel architectures (including GPUs and
multi-core CPUs) using our extension of NVIDIA’s Thrust library. In this paper, we discuss our extension of the Thrust library to
support concurrency in distributed memory environments across multiple nodes. This enables the application developer to write
data-parallel algorithms while viewing the data as single, long vectors, essentially without needing to explicitly take into consideration
whether the values are actually distributed across nodes. Our distributed wrapper for Thrust handles the communication in the
backend using MPI, while still using the standard Thrust library to take advantage of available on-node parallelism. We describe
the details of our distributed implementations of several key data-parallel primitives, including scan, scatter/gather, sort, reduce, and
upper/lower bound. We also present two higher-level distributed algorithms developed using these primitives: isosurface and KD-tree
construction. Finally, we provide some timing results demonstrating the ability of these algorithms to successfully take advantage of
available parallelism on nodes and across multiple nodes.

Index Terms—Data-parallel, PISTON, distributed memory, isosurface, KD-tree, Thrust

1 INTRODUCTION

Gains in the number of operations per second achievable with new
hardware architectures have been increasingly driven by higher de-
grees of concurrency rather than by increasing clock speeds. Never-
theless, the heterogeneity of available architectures generally requires
a significant amount of platform-specific optimization of code, taking
into account such specifics of the target architecture as the structure of
the cache hierarchy, the number and organization of available threads
and thread groups, the vector width, etc., in order to take advantage of
the available parallelism and approach the theoretical potential. When
an architecture supports a cross-platform language, such as OpenCL,
it may be possible to simply run existing code on a new architecture,
but the code must still be tuned and often re-designed in order run
efficiently.

Data-parallelism is a programming model that maps well to archi-
tectures with a high degree of concurrency. Using only a limited set
of “embarrassingly parallel” data-parallel primitive operators, such as
scan, transform, and reduce, a wide variety of higher-level algorithms
can be constructed. These algorithms will then run efficiently on any
architecture for which an efficient implementation of the data-parallel
primitives exists, without needing to optimize the higher-level algo-
rithm for the target platform.

In [LSA12], we introduced PISTON, our framework for develop-
ing data-parallel visualization and analysis operators. PISTON is built
on top of NVIDIA’s Thrust library. Thrust is a C++ template library
that provides CUDA, OpenMP, and TBB implementations for a set of
simple algorithms, most of which are data-parallel primitives [Thr12].
These algorithms operate on host and device vectors (where the de-
vice may be an accelerator such as a GPU or an Intel Xeon Phi), and
data can be transferred between the two data types. We implemented
an isosurface algorithm using these data-parallel primitives, based on
the standard Marching Cubes algorithm [LC87], and designed to mini-
mize data movement by creating a reverse mapping from output vertex
index to input cell index. Cut surface and threshold operators using
the same algorithmic pattern were also presented. We showed that our
data-parallel implementations of these algorithms allowed us to com-
pile the exact same operator code for different multi and many-core
architectures (GPUs using Thrust’s CUDA backend and our prototype
OpenCL backend, and multi-core CPUs using our enhancement of
Thrust’s OpenMP backend). The performance cost for this portablilty
was shown to be fairly small relative to reference platform-native im-
plementations for these algorithms.

While our previous work focused on taking advantage of on-node
parallelism in shared memory environments, in this paper we extend
our data-parallel framework to also work across nodes in a distributed
memory environment. Many key data-parallel primitives have been
implemented in a new wrapper backend, which uses MPI to communi-
cate between nodes. Within the wrapper backend, the existing CUDA
or OpenMP backend implementations are called for on-node work in
order to also still take advantage of all cores available on each node.
Higher-level algorithms can then be written in the same manner as the
data-parallel algorithms we presented in our previous work for a sin-
gle node. The data can be treated as a single vector (even though it is
actually distributed across nodes), with the inter-node communication
handled “under the hood” in the distributed backend. Thus, virtually
identical operator code can be compiled and run efficiently on a single
multi-core CPU or many-core accelerator (such as a GPU), or a set of
nodes with multi-core CPUs or many-core accelerators.

In this paper, we first describe relevant related work. Then, we
describe the implementation details of a number of key data-parallel
primitives in our distributed backend. Higher-level algorithms for iso-
surface and KD-tree construction are then presented, each built using
these distributed data-parallel primitives. In the Results section, we
compare the performance of the isosurface implemented using the dis-
tributed data-parallel primitives to two alternatives: manually dividing
the input equally among the nodes, each of which runs our on-node
isosurface algorithm; and performing the computation for the entire
input on a single node. We also demonstrate scaling and performance
results for the KD-tree construction algorithm. Finally, the implica-
tions of this work and some opportunities for future work are summa-
rized in the Conclusion.

2 RELATED WORK

The theoretical foundation for our work in data parallelism is laid out
in [Ble90]. Blelloch describes a scan vector model, consisting of a
set of data-parallel primitives very similar to those now available in
Thrust. He then outlines a variety of higher-level algorithms con-
structed using this scan vector model in the fields of data structures,
computational geometry, graphs, and numerical analysis. Our KD-tree
construction algorithm is based on the outline provided by Blelloch.
Nested data parallelism, as found in, for example, divide-and-conquer
algorithms such as quicksort and KD-tree construction, is flattened us-
ing segment descriptors. Blelloch’s data parallel programming model
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efforts were implemented on the Thinking Machine’s Connection Ma-
chine family of hardware (CM2, CM-200 and CM5) [Hil89]. Johns-
son led a team of computer scientists and applied mathematicians to
optimize algorithms and applications on this data parallel hardware
architecture [Joh93, JHM*92]. Blelloch’s NESL functional language,
designed to support nested data parallelism on wide vector machines,
was ported to GPUs by [BR12]. Our work significantly extends these
efforts by providing a portable implementation of data parallel con-
structs on modern multi-core and accelerator-based architectures.

More generally, a number of people have made significant progress
in implementing algorithms, including many used in visualization and
analysis, on high-concurrency distributed memory and mixed shared-
distributed memory architectures. For example, [FCS*10] describes
the implementation of a parallel volume renderer within the VisIt li-
brary that has been run with large data sets (81923 voxels) on up to
256 GPUs. Others have explored the advantages and disadvantages of
mixed-mode programming using both MPI and OpenMP, identifying
situations in which such a strategy is most efficient (such as when a
pure MPI program suffers from poor scaling due to load imbalance or
too fine a grain problem size) [SB01]. Libraries, such as Argonne Na-
tional Laboratory’s DIY [PRK*11], have been developed in order to
provide cleanly encapsulated implementations of common MPI func-
tionality and communication patterns, allowing algorithm developers
to write code without having to directly deal with the complexities of
distributed memory programming. Data parallelism has also been fur-
ther explored in the context of extending the VTK visualization library
to take advantage of many and multi-core architectures in the Dax
[MAG*11] and EAVL [MAP*12] projects. The OpenMPI [Gab04]
and related OpenRTE [CWD*08] projects have attempted to improve
the MPI runtime to work well on large, heterogeneous systems, with
ease of use, resiliency, scalability, and extensibility as design objec-
tives. MapReduce [DG08] is a popular programming model for pro-
cessing large data sets across distributed, heterogenous clusters, al-
though the class of problems that can be solved in this model is rela-
tively limited.

Our work makes several significant contributions to extend this ex-
isting body of work. Embedding both the distributed and shared mem-
ory data parallelism within a framework based on Thrust allows the
algorithm developer to program using C++ and an STL-like vector li-
brary, which is likely to be more familiar, easier to use, and simpler to
integrate with other code than the alternatives. Also, our framework is
portable across different types of on-node parallelism (GPUs, CPUs,
etc.). By supporting nested parallelism through the use of segmented
vectors, it allows for a wide variety of algorithms to be efficiently im-
plemented. Finally, it allows the programmer to write an algorithm
in the same way regardless of whether it is to be run serially, with
any supported type of shared-memory parallelism, with distributed-
memory parallelism, or with both distributed and shared-memory par-
allelism.

3 IMPLEMENTATION

Our distributed backend is currently implemented as a wrapper around
the standard single-node Thrust. Like Thrust, the code is provided
in header files (.h and .inl), is contained within a namespace called
dthrust, and provides an interface of functions with similar or iden-
tical names and signatures as corresponding Thrust functions. This
makes it easy to still compile and use Thrust for various on-node accel-
erators while using the distributed wrapper. For example, a scan across
multiple GPUs could be called using dthrust::scan instead of
thrust::scan, and compiling with the CUDA backend. The op-
erator code is written as if there were a single device vector, while in
fact the elements of the vector are spread across device vectors in each
process. In this section, we describe our implementations of several of
the more important and/or interesting data-parallel primitives, as well
as several higher-level algorithms built using these primitives.

3.1 Distributed Implementations of Data-Parallel Primi-
tives

3.1.1 Data Transfer Functions

In some cases, all of the data may fit in the host memory of the root
process, and the reason for distributing the data among multiple ranks
is to take advantage of multiple accelerators (such as GPUs) which
have their own memory spaces (which are likely smaller than that
of the host). For such cases, utility functions are provided to easily
transfer data from a host vector on the root to device vectors in each
process and vice-versa. This can also be very helpful for debugging
code that will later be run with a larger input data set that is itself
distributed across the processors. The device to host function
uses an MPI Gather to collect the vector sizes from each process,
performs an exclusive scan on the vector sizes to get the displace-
ments into the root host vector at which to begin writing data from
each process, transfers the local data from device to host, and finally
uses an MPI Gatherv to send data from all processes to the root
host vector. The host to device function sets the vector size for
each process so as to divide the host vector evenly (with any remain-
der on the last process), or to user-specified sizes on each processor,
then uses an MPI Gather to collect the vector sizes on each process,
performs an exclusive scan to get the displacements into the root host
vector at which to begin reading the data for each process, uses an
MPI Scatterv to send data from the root host vector to each pro-
cess, and finally transfers the local data on each process to a device
vector.

3.1.2 Rebalancing and Shifting

A rebalance function allows a vector to be re-balanced across the pro-
cessors, either uniformly, or so as to match the distribution of another
vector of equal global length. The first case provides better load bal-
ancing, while the second case is useful in order to perform another
function (such as transform) on two or more vectors while keeping all
computation local. The current local vector sizes are gathered to the
host, which performs an exclusive scan to compute the current global
offset for each processor, which it scatters to the respective proces-
sors. The new desired local sizes for each processor (either computed
to be uniform, or taken from the reference vector on that processor) are
broadcast to all processors, so that all processors can perform an exclu-
sive scan and get the new global starting indices for each processor. A
counting iterator starting with the processor’s current global offset can
then be searched in the vector of new global offsets using the regular
Thrust upper bound function to get the new processor id to which
each element will belong. Each processor then informs each other
processor how many elements it will send it using an MPI Scatter.
Finally, in order, each processor uses an MPI Scatterv to send data
belonging to each other processor, and each receiving processor ap-
pends the received data to its new local vector, while the sending pro-
cessor appends its local data to its new local vector, ensuring that
the elements in the result are in the correct order (data from lower-
numbered processors should come before data from higher-numbered
processors). In most cases, each processor will only need to commu-
nicate with a small number of other processors with ranks close to its
own, but in the worst case, any processor may need to send data to any
other processor.

The implementation of the shift function also begins by gathering
the local vector sizes to the host, which performs an exclusive scan to
compute the total global size and the global offset for each processor,
which it scatters to the respective processors. (Alternatively, this may
be accomplished with an MPI Excan.) Given its global offset, the
global size, and the number of places to shift, each processor can com-
pute how many, if any, of its elements should be dropped rather than
copied to the local output vector. The first processor (in the case of a
right shift), or the last processor (in the case of a left shift), append a
number of zeros to its local output vector equal to the number of shift
places. As with some of the other operators to be described later, this
algorithm limits communication (no elements are actually moved), at
the expense of ensuring good load balance. However, if desired, the
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result can then be fed to the rebalance function described above, which
will optimize the load balance at the expense of some communication.

Functions for other utility functions such as creating counting iter-
ators and for returning the first (front) or last (back) element of the
global vector are also included.

3.1.3 Transform, Scan, Segmented Scan, Scatter, Gather, and
Reductions

Unary transforms can be performed locally on each processor so long
as user-defined functors either do not access any other vectors, or are
restricted to only access vectors with an equivalent distribution across
processors (which can be ensured with the rebalance function).
Similarly, a binary transform can be performed trivially on two vectors
with an equivalent distribution.

Inclusive and exclusive scans for a given binary operator may be
performed by executing the scan on each local device, gathering the
local sums (where “local sum” means the final result of the local scan,
using the given binary operator, combined with the final local input
value in the case of an exclusive scan), performing a scan on those,
and then applying each value in this result as an offset for the corre-
sponding process. The scan on the processor sums can be performed
using the MPI Exscan function, but we have found that performing
this scan by using the MPI Gather function, executing the scan on
the root, and using MPI Scatter to distribute the computed offsets
back to the processors is slightly faster and easier to adapt to special
cases, such as reverse iterator input (in which case the scan needs to
be performed in reverse). The distributed scan algorithm is illustrated
in Figure 1.

For segmented scans (called scan by key in Thrust), the seg-
mented scan is also first executed locally on each device, and the local
sums, as well as the first and last segment id for each local vector,
are gathered on the root. However, since each processor may contain
more than one segment, and each segment may span more than one
processor, the processor offsets cannot be computed by simply per-
forming one scan on the processor sums. Instead, for each processor,
the previous processor sums are accumulated so long as their last seg-
ment id is equal to its first segment id. In the worst case, this could
take O(p2) time, where p is the number of processors. These offsets
are then distributed to each processor using an MPI Scatter, and
each processor applies the received offset only to its elements with the
same segment id as the last element of the previous processor, using
Thrust’s transform if function.

A scatter operation is implemented by first broadcasting the number
of elements belonging to each processor and computing an exclusive
scan on this result to obtain the global index at which each proces-
sor’s vector begins. A functor which takes this vector of processor
start indices as input is used with a transform operator to compute
the processor destination and local index from each global destination
index. Each processor can then either perform a scan by key to or-
der the input data and local indices by destination processor and then
use MPI Scatterv to send all this data to each other processor, or
can avoid the sort and use copy if to stream compact the values to
be sent to each other processor one at a time using MPI Send and
MPI Recv. Finally, Thrust’s local scatter operator can be used to
locally distribute the data to their proper local indices. While this dis-
tributed scatter operator can often be a useful tool in designing higher-
level data-parallel algorithms, it can incur significant communication
overhead (in the worst case, all elements are sent once to another pro-
cessor), so it should only be used when needed.

A gather operation (which is also performed by a permutation itera-
tor in Thrust) can be implemented in a similar manner. However, once
the global map indices have been converted to processor ids and local
indices, two phases of communication are necessary: the first for the
requesting processors to send local indices to be fetched from other
processes, and the second for these processes to return the requested
data. Local data residing on the same processor as the one where it was
requested are copied to the output using a gather if (conditioned
on the computed source process rank being equal to the process’s own
rank). Data requested from the other processes is received back in

the order of the source processors’ ranks, so the final local destination
indexes for the vector of received data values must be computed by
stream compacting a counting iterator using a copy if conditioned
on the source process not being equal to the process’s own rank and
then performing a stable sort by key (with the source process
ids as the keys). The vector of received data can then be scattered to
these local indices in the output.

Distributed reductions are implemented simply by performing the
reduction locally on each processor, gathering the results of these lo-
cal reductions to the host, and performing a final global reduction on
these values. To match the syntax of Thrust, transform scans are also
provided, although those are currently implemented simply as a trans-
form followed by a scan without kernel fusion.

5     6     2     1    2     5     4     1     3     8     2     7    9     2     4     3    

5   11   13   14    2     7    11  12    3    11  13   20    9    11  15  18    

 0    14  12   20  

 0   14   26   46  

0                         14                        26                        46 

5    11   13  14   16   21  25   26  29   37   39  46   55   57  61   64 

thrust::inclusive_scan 

thrust::inclusive_scan 

MPI_Gather 

MPI_Scatter 

thrust::transform 

    P0                   P1                 P2                 P3               

Alternative: M
PI_Exscan 

Fig. 1. Diagram of the distributed scan algorithm (showing here an
inclusive scan)

3.1.4 Upper and Lower Bound

A restricted version of the Thrust search operator upper bound has
also been implemented in the distributed wrapper. As with the regu-
lar Thrust upper bound, the input search vector must be an ordered
sequence, but in this case, the vector of values for which to search
must be a counting iterator, and each element of the ordered sequence
must be either equal to or one greater than the previous element. This
restricted operator is useful for many applications, as shown, for ex-
ample, in the distributed isosurface algorithm described below. Each
processor can use the regular upper bound operator to determine
the local indices for all counting iterator values between the minimum
and maximum values of the portion of the ordered sequence vector on
that processor. Each processor (except the last) also communicates the
last value in its portion of the ordered sequence to the next processor.
If this value is not the same as the first value owned by the receiving
process, the receiving process adds an extra value at the beginning of
its portion of the output vector with a local index of zero. Using an
MPI Exscan on the local ordered sequence vector size, it can com-
pute the beginning global index of the ordered sequence on each pro-
cessor, and use the transform operator to add this global offset to the
computed local indices. If the last value in the ordered sequence on the
last processor is less than the maximum value of the counting iterator,
the last index of the ordered sequence is appended to the output vector
for each counting iterator value in excess of the final ordered sequence
value.

This algorithm results in a very limited amount of inter-node com-
munication, with each processor sending only a single value to one
other process. However, it can result in an output vector that is not
evenly balanced across the processors. If desired, the output vector
can be passed to the rebalance utility function to improve load bal-
ancing. An implementation of lower bound should be symmetrical
to this algorithm, but has not yet been implemented.

3



3.1.5 Sort and Sort by Key
Our distributed wrapper implements the sort operator using a dis-
tributed sample sort [SS92] [KS10]. The data is first sorted locally on
each processor using the regular Thrust sort operator. Then, equally-
spaced samples are selected from the sorted data on each processor
and gathered onto the host where they are sorted. Equally spaced
splitter values are then selected from the sorted samples and broad-
cast to each processor. Each processor can then compute the ranges in
its local sorted data to send to each other processor, either by calling
count if for each processor id and then performing an exclusive
scan, or by using upper bound. All data that needs to be sent to
other processors is then distributed using MPI Scatterv. The data
received from the other processes is sorted and then merged with the
local data remaining on the processor using the regular Thrust sort
and merge functions. Aside from the communication to determine
the splitter values, the data movement is the minimum required to get
each element to its proper processor, and the load balancing is good.

Sort by key (in which the elements in a vector of values are re-
arranged along with their correponding keys as the keys are sorted)
is implemented using the same algorithm. Thrust’s sort by key is
used instead of sort for the local sorts, and the associated values
must be sent between processors along with the keys that are moved.
The received keys and values as well as the local keys and values are
copied to the corresponding key and value output vectors and sorted
together using sort by key.

3.2 Algorithms Built Using the Distributed Primitives
Higher-level data-parallel algorithms, such as those commonly used
in visualization and analysis, can then be constructed using the dis-
tributed primitives described in the previous section. In this section,
we describe two such algorithms: isosurfacing, based on the algorithm
we previously published using Thrust on a single multi- or many-core
node, and constructing a KD-tree. The key advantage of this strategy
from the point of view of the algorithm developer is that he/she can de-
sign the algorithm in the same way as he/she would for a single node
or even single core essentially without needing to explicitly consider
the fact that it will run on multiple cores and on multiple nodes, and yet
the resulting operator will take advantage of the available parallelism
and be portable across any architectures supported by the backends.

In the case of the isosurface, it is also possible to get a speedup
across multiple nodes in a fairly straightforward manner without us-
ing distributed data-parallel primitives by running the single node im-
plementation on each node, each operating on a subset of the input
with ghost cells replicated as necessary (although the speedup may
not be ideal due to poor load balancing of the number of output ver-
tices). However, while distributed algorithms often exist, many other
operators, such as constructing a single global KD-tree across multi-
ple nodes, require explicit consideration of the distributed environment
and cannot be implemented as a straightforward extension of a single-
node shared-memory algorithm without using distributed data-parallel
primitives.

3.2.1 Isosurface
Our distributed isosurface algorithm is almost identical to our previ-
ously published single-node algorithm [LSA12]. The general principle
is that it generates a “reverse mapping” from output vertex index to in-
put cell index (rather than from input cell index to output vertex index),
allowing it to “lazily” apply operations only to cells that will generate
the output vertices. Code for the distributed algorithm is given in List-
ing 1. Implementations of the functors (such as classify cell
and isosurface functor) are not listed, but are exactly the same
as those used in the single-node algorithm, except for a small modifi-
cation when used with a data set from a file (rather than procedurally
generated data), as described later in this section.

Using the transform primitive, with the classify cell functor
that computes the Marching Cubes case number index for a cell based
on its pattern of vertices above and below the isovalue, a vector of case
number indices (case indices) and a vector of the number of out-
put vertices generated by each cell (num vertices) are generated.

A transform inclusive scan with the is valid cell
functor that returns one for any value greater than zero is then
performed on the number of vertices to enumerate the valid cells
(valid cell enum). The last element of this vector indicates the
total number of valid cells. A search (upper bound counting) is
then performed on a counting iterator that enumerates the valid cells,
searching in the valid cell enum vector to find the index of the
first element greater than each counting iterator element. The result of
this search is stored in valid cell indices. This compact vector
of global indices of the valid cells is used to fetch the number of output
vertices for each valid cell using gather, and an exclusive scan
on this result (output vertices compact) gives the start-
ing offset into the global output vertex array for each valid cell
(output vertices enum). In the original single-node algorithm,
the gather was combined with the exclusive scan using Thrust’s per-
mutation iterator, but we have not yet implemented distributed per-
mutation iterators. The total number of vertices in the output is the
sum of the last elements of the output vertices compact and
output vertices enum vectors (the starting offset of the final
valid cell plus the number of vertices produced by the final valid
cell). One small additional step required in the distributed version
of the algorithm is to compute the number of local vertices in the
same way as the number of global vertices, except using only the
local versions of those two vectors, in order to correctly resize the
local sections of the vertex, normal, and scalar vectors. Finally, the
vertices, normals, and scalars are generated using for each with
the isosurface functor functor. Since no communication be-
tween vector elements is needed in this step, the standard single-node
for each may be called by each processor (as was also the case with
the transform in the first step).

Due to the implementation of upper bound counting, as de-
scribed above, the gather step requires virtually no communication,
but is likely to result in a valid cell indices vector that is not
well balanced across nodes. The vector may be evenly redistributed
using the rebalance function, at the cost of inter-node communica-
tion. In practice, the number of cells that actually generate geometry is
usually quite small compared to the original number of input cells, so
an unbalanced workload in the final steps that compute the vertices for
each valid cell may not significantly impact the overall performance,
which may be dominated by the initial, well load-balanced steps that
examine all input cells to determine which will generate geometry.

When data from a file (such as the ocean temperature data set shown
in Figure 8) is used rather than procedurally generated data (such as
the “tangle” field described in the Results section), the appropriate
range of data must be used to instantiate the local PISTON image data
structure on each processor. For VTK image files used as input to the
isosurface operator, in which the layout of the 3D data into a 1D array
is such that the x coordinates increase fastest and the z slowest, each
processor should include a range with x*y ghost cells preceding and
following its portion of the input data (where x and y are the x and
y dimensions of the input), except at the global beginning and end.
Also, the classify cell and isosurface functor functors
need to subtract the global index of the first element of the local input
data from the computed global index before accessing the local input
data.

3.2.2 KD-Tree

As shown in Figure 2, the goal of the KD-tree algorithm is to construct
a binary tree such that, at each level, the input points belonging to the
parent node are evenly distributed to the child nodes based on one of
their coordinate values. Sample 2D input points are illustrated in Fig-
ure 2A, and the high-level algorithm steps are shown for the first two
levels in Figure 2B. First, an initialization step is performed, in which
the global rank of each input point is determined for each coordinate
dimension. This is accomplished for each dimension by applying the
distributed sort by key operator, where the values are the point ids
and the keys the coordinates, and then by scattering a counting iterator
according to the sorted values.

At each level, the tree is represented by a segmented vector, where
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1 // Initialize a counting iterator, and allocate memory for vectors
2 thrust::counting_iterator<int> countingIterator;
3 dthrust::make_counting_iterator(0, input.NCells, countingIterator);
4 dthrust::resize(input.NCells, case_indices);
5 dthrust::resize(input.NCells, num_vertices);
6 dthrust::resize(input.NCells, valid_cell_enum);
7
8 // Classify all cells to get Marching Cubes case index and number of vertices to generate
9 thrust::transform(countingIterator, countingIterator+case_indices.size(),

10 thrust::make_zip_iterator(
11 thrust::make_tuple(case_indices.begin(), num_vertices.begin())),
12 classify_cell(input, isovalue, numVertsTable.begin()));
13
14 // Enumerate the valid cells
15 dthrust::transform_inclusive_scan(num_vertices.begin(), num_vertices.end(),
16 valid_cell_enum.begin(), is_valid_cell(),
17 thrust::plus<int>());
18
19 // Find the indices of the valid cells
20 dthrust::upper_bound_counting(valid_cell_enum.begin(), valid_cell_enum.end(),
21 num_valid_cells-1, valid_cell_indices);
22
23 // Use valid cell indices to fetch case index and number of vertices for each valid cell
24 dthrust::gather(num_vertices.begin(), num_vertices.end(), valid_cell_indices.begin(),
25 valid_cell_indices.end(), output_vertices_compact);
26 dthrust::gather(case_indices.begin(), case_indices.end(), valid_cell_indices.begin(),
27 valid_cell_indices.end(), case_indices_compact);
28
29 // Do an enumeration to get output indices for first vertex generated by valid cells
30 output_vertices_enum.resize(output_vertices_compact.size());
31 dthrust::exclusive_scan(output_vertices_compact.begin(), output_vertices_compact.end(),
32 output_vertices_enum.begin(), 0, thrust::plus<int>());
33
34 // Get global and local number of vertices, and allocate space for vertex arrays
35 num_total_vertices = dthrust::back(output_vertices_compact) +
36 dthrust::back(output_vertices_enum);
37 int num_local_vertices = 0;
38 if ((output_vertices_compact.size() > 0) && (output_vertices_enum.size() > 0))
39 num_local_vertices = output_vertices_compact.back() +
40 (output_vertices_enum.back() - output_vertices_enum.front());
41 vertices.resize(num_local_vertices);
42 normals.resize(num_local_vertices);
43 scalars.resize(num_local_vertices);
44
45 // Do edge interpolation for each valid cell
46 if (num_local_vertices > 0)
47 thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(
48 valid_cell_indices.begin(),
49 output_vertices_enum.begin(),
50 case_indices_compact.begin(),
51 output_vertices_compact.begin())),
52 thrust::make_zip_iterator(thrust::make_tuple(
53 valid_cell_indices.end(),
54 output_vertices_enum.end(),
55 case_indices_compact.end(),
56 output_vertices_compact.end())),
57 isosurface_functor(input, source, isovalue,
58 output_vertices_enum[0], triTable.begin(),
59 thrust::raw_pointer_cast(&*vertices.begin()),
60 thrust::raw_pointer_cast(&*normals.begin()),
61 thrust::raw_pointer_cast(&*scalars.begin())));

Listing 1. Code for distributed isosurface algorithm
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A KD Tree: Overview 

                       Point Ids           X Ranks            Y Ranks 

computeGlobalRanks  0 1 2 3 4 5 6 7    1 6 0 2 7 3 4 5    0 5 2 3 7 6 4 1 

computeFlags(X)     F T F F T F T T    F T F F T F T T    F T F F T F T T 

segmentedSplit      0 2 3 5 1 4 6 7    1 0 2 3 6 7 4 5    0 2 3 6 5 7 4 1 

    flags       F F F F T T T T    F F F F T T T T    F F F F T T T T 

    segmentIds       0 0 0 0 1 1 1 1    0 0 0 0 1 1 1 1    0 0 0 0 1 1 1 1 

renumberRanks                          1 0 2 3 2 3 0 1    0 1 2 3 2 3 1 0 

computeFlags(Y)     F F T T T T F F    F F T T T T F F    F F T T T T F F 

segmentedSplit      0 2 3 5 6 7 1 4    1 0 2 3 0 1 2 3    0 1 2 3 1 0 2 3 

    flags       F F T T F F T T    F F T T F F T T    F F T T F F T T 

    segmentIds       0 0 1 1 2 2 3 3    0 0 1 1 2 2 3 3    0 0 1 1 2 2 3 3 

renumberRanks                          1 0 0 1 0 1 0 1    0 1 0 1 1 0 0 1 
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l 1
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B 
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KD Tree: Segmented Split 
A  Input pointIds                                                  0 2 3 5 1 4 6 7 

B  Input flags                                                     F F T T T T F F 

C  Input segmentIds                                                0 0 0 0 1 1 1 1 

D  exclusive_scan_by_key(C,B)                                      0 0 0 1 0 1 2 2 
// total number of true flags preceding in segment 

E  CountingIterator(0)                                             0 1 2 3 4 5 6 7 

F  inclusive_scan_by_key(C,E,min)                                  0 0 0 0 4 4 4 4 
// total number of elements in previous segments 

G  inclusive_scan_by_key(C,inverse(B))                             1 2 2 2 0 0 1 2 
// total number of false flags so far in segment 

H  Reverse inclusive_scan_by_key(C,G,max)                          2 2 2 2 2 2 2 2 
// total number of false flags in segment                               

I  transform(I[i]=(if(B[i]) F[i]+H[i]+D[i] else F[i]+G[i]-1))      0 1 2 3 6 7 4 5 
// if true, new index is total number in previous segments  
// plus total number of falses in this segment plus number of  
// trues preceding it in the segment; if false, new index is  
// total number in previous segments plus number of falses  
// preceding it in the segment 

J  scatter(A,I)                                                    0 2 3 5 6 7 1 4 

C KD Tree: Renumber Ranks 

A  Input ranks                                         0 1 2 3 1 0 2 3 

B  Input flags                                         F F T T F F T T 

C  Input segmentIds                                    0 0 1 1 2 2 3 3 

D  Input pre-split segmentIds                          0 0 0 0 1 1 1 1 

E  CountingIterator(0)                                 0 1 2 3 4 5 6 7   

F  inclusive_scan_by_key(D,E,min)                      0 0 0 0 4 4 4 4 

G  transform(A+F)                                      0 1 2 3 5 4 6 7 

H  ConstantIterator(1)                                 1 1 1 1 1 1 1 1 

I  exclusive_scan_by_key(C,H)                          0 1 0 1 0 1 0 1 

J  scatter(I,G)                                        0 1 0 1 1 0 0 1 

K  scatter(B,G)                                        F F T T F F T T 

L  segmentedSplit(J,K,D)                               0 1 0 1 1 0 0 1 

M  inclusive_scan_by_key(C,E,min)                      0 0 2 2 4 4 6 6 

N  transform(L+M)                                      0 1 2 3 5 4 6 7 

O  scatter(I,N)                                        0 1 0 1 1 0 0 1                       

D 

Fig. 2. KD-tree algorithm: A) Sample 2D input points, showing two successive levels of splitting (first in x, then in y) B) Overview of the steps in
computing the KD-tree for the first two levels C) Details of the segmented split algorithm D) Details of the renumber ranks algorithm

each segment corresponds to a node, and the elements within that seg-
ment are the points belonging to the subtree rooted at that node. Thus,
there are 2l segments for the vector at level l. At each successive level,
points in one segment are partitioned into two new smaller segments.
Since segments represent subtrees, points in a lower level are never in
a position outside the range of their parent segment, so global commu-
nication is greatest when computing the top levels of the tree and least
for lower levels.

At each level, the algorithm then consists of three steps: compute
flags (true/false) to mark which points will belong to the left child and
which to the right child; split the points to the left and right subtree
positions; and convert the points’ relative ranks in the parent node in
each coordinate dimension to their relative ranks in the child node. In
the version of the algorithm we have implemented, the coordinate di-
mension used for splitting alternates at each successive tree level. The
rank renumbering step ensures that, for each segment of length m, we
have the ranks 0 through m-1 of the points in that segment. Thus, the
median point, to be used for the split, is simply the point with rank m/2
(with the median itself included in the right subtree for an even num-
ber of points). The flags can therefore be generated by first applying a
reverse inclusive scan by key with the maximum operator to
a counting iterator to obtain a vector specifying for each element the
total number of elements in its segment. A transform can then be
applied to set the flag for each element depending on whether its rank
is less than or greater than or equal to the median rank of its segment
(half the total number of elements in the segment). The segmented
split step, as illustrated in Figure 2C, computes the new global index
for each element, and then uses scatter to move each point to its
new position in the next tree level. For points with a false flag, the

new global index is computed as the total number of elements in pre-
vious segments plus the number of falses preceding it in its segment.
For points with a true flag, the new global index is computed as the
total number of elements in previous segments plus the total number
of falses in its segment plus the number of trues preceding it in its seg-
ment. The rank renumbering step is somewhat more involved, making
use of several scans and scatters, as well as the segmented split func-
tion, and is best illustrated with an example as in Figure 2D.

The KD-tree construction algorithm makes extensive use of a num-
ber of the distributed primitives, including the segmented versions of
sort and scan. The 3D case, as implemented in our code, is a straight-
forward extension of the 2D example presented here, with just one
more vector for z-coordinate ranks. In most cases, it is likely to in-
cur a fair amount of global communication overhead, particularly in
the top levels of the tree. Some of this may be able to be reduced
with further refinements of the algorithm. For example, in theory, val-
ues should not need to moved outside of their original segment during
the rank renumbering step, since all the necessary information is lo-
cal to the segment. Nevertheless, this algorithm is a good example of
how a type of problem with nested data parallelism can be success-
fully implemented in this paradigm, with reasonable performance (as
discussed in the Results section).

4 RESULTS

Two systems were used for running our performance tests. Up to
128 nodes on the Moonlight supercomputer were used, each hav-
ing a 16-core 2.6 GHz Intel Xeon E5-2670 CPU, 64 GB of RAM,
and an NVIDIA Tesla M2090 GPU. OpenMPI 1.6.3, GCC 4.4.6 with
OpenMP support, and CUDA 5.0 were used. Up to eight nodes on one
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partition of the Darwin cluster were also used, each having a 48-core
1.9GHz AMD Opteron 6168 CPU, 128 GB of RAM, and an NVIDIA
Quadro 5000 GPU. OpenMPI 1.6.4, GCC 4.4.7 with OpenMP support,
and CUDA 5.0 were used.

Three versions of the isosurface algorithm were compared. The
first simply uses our original PISTON isosurface algorithm on a single
node. The second is manually configured using MPI to run our orig-
inal algorithm independently on multiple nodes, with input explicitly
divided among the nodes. The third uses our distributed isosurface al-
gorithm, with the input treated as one large vector and the details of
the communication hidden in the implementations of the data-parallel
primitives. The input for these tests was the implicitly-defined “tan-
gle” data set (similar to that used in NVIDIA’s Marching Cubes CUDA
demo, with equation (x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 11.8) ∗ 0.2 +
0.5). The reported times are the average for the computation only over
ten isosurfaces, with the output being vectors (distributed across the
nodes) of the vertex positions, normals, and scalar values. They do not
include gathering the results back to a root node or generating or com-
positing images. Our single node isosurface algorithm was compared
to reference implementations from NVIDIA, VTK, and Parallel VTK
in [LSA12].

Figure 3 and Figure 4 show the performance of these three ver-
sions with different input sizes, each run on four nodes using, respec-
tively, the CPU with the Thrust OpenMP backend and the GPU with
the Thrust CUDA backend. On the GPU, the distributed algorithm is
slower than the manual multi-node version for small data sizes, pre-
sumably due largely to the communication overhead (including trans-
fering data between GPU and CPU to be sent to another processor).
However, since the amount of communication in this algorithm is on
the order of the number of processors rather than the data size, the dis-
tributed algorithm converges towards the manual multi-node algorithm
for larger data sizes. For the larger data sizes, both the distributed and
manual multi-node versions run on four nodes about 3 to 3.5 times
faster than the single node version.

0.
00

2
0.

01
0

0.
05

0
0.

20
0

1.
00

0
5.

00
0

3D Isosurface Generation: Compute Rates with OpenMP

Grid size cubed (log scale)

S
ec

on
ds

 p
er

 Is
os

ur
fa

ce
 (

lo
g 

sc
al

e)

128 256 512 1024

0.00838

0.0588

0.432

3.23

0.00239

0.0152

0.11

0.818

0.00274

0.0163

0.128

0.95

Single node PISTON
Input distribution across four nodes with PISTON
Distributed PISTON on four nodes

Fig. 3. 3D Isosurface Generation: OpenMP Compute Rates on four
Intel Xeon E5-2670 nodes on Moonlight supercomputer

As shown in Figure 5, the distributed version run on the CPU
makes good use of available on-node parallelism, scaling well with the
OpenMP thread count, just as the original single-node version does.
Figure 6 shows the scaling with the number of nodes used. Both the
distributed version and the manual multi-node version scale well, with
just a small roughly constant overhead for the distributed version. The
scaling likely benefits from the fact that the input “tangle” field has
symmetry properties that result in a relatively good load balance. With
different input sets, the load balancing for the final steps that compute
the output vertices may be better or worse. However, as long as the
percentage of cells generating output is relatively small, the overall
time will likely be dominated by the well load-balanced initial steps.
In some cases, better performance may perhaps be obtained by calling
the rebalance operator on valid cell indices before execut-
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Fig. 4. 3D Isosurface Generation: CUDA Compute Rates on four
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer

ing the final steps. Figure 7 shows that the distributed algorithm com-
piled using CUDA also scales with the number of GPUs (using one
GPU per node), although the parallel efficiency falls off with larger
numbers of nodes. This is likely due at least in part to the fact that
the GPUs, with more limited memory relative to the CPUs, can only
handle a smaller amount of data per node, and that there is a cost for
transfering the data between the GPU and the CPU in order to send it
to other nodes, providing less opportunity for gains in computational
efficiency to mask the communication overhead. (With a data size of
10243, rather than 5123, we have observed the distributed algorithm
running 1.4 times faster with 64 GPUs than 32 GPUs.)
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Fig. 5. 3D Isosurface Generation: Scaling with the number of OpenMP
threads on four Intel Xeon E5-2670 nodes on Moonlight supercomputer

However, performance scaling is not the only reason to want to per-
form a computation distributed across multiple GPUs. In our original
PISTON paper, we were not able to compute isosurfaces for a full-
resolution 3600x2400x42 ocean temperature data set (from [MPV10])
on a single Quadro 6000 GPU due to memory constraints, so we
had to downsample it to an 1800x1200x42 data set. Using the dis-
tributed version of the isosurface algorithm, we are now able to com-
pute isosurfaces on the full-resolution data set across four Quadro
5000 GPUs. An example result rendered from this distributed com-
putation is shown in Figure 8.

Figure 9 and Figure 10 show the scaling of the distributed KD-tree
construction algorithm with the available on-node and inter-node par-
allelism, respectively. It is able to make good use of up to 16 OpenMP
threads on the tested AMD Opteron 6168. The performance also in-
creases with the number of nodes (up to eight, the maximum tested).
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Fig. 6. 3D Isosurface Generation: Scaling with the number of Intel Xeon
E5-2670 nodes on Moonlight supercomputer

2 5 10 20 50

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

3D Isosurface Generation: Strong Scaling with Number of GPUs
(512x512x512 grid, CUDA)

Number of GPUs (log scale)

S
ec

on
ds

 p
er

 Is
os

ur
fa

ce
 (

lo
g 

sc
al

e)

0.121 0.121 0.121 0.121 0.121 0.121

0.0598

0.0317

0.0187

0.00983

0.00541

0.00294

0.0707

0.0378

0.0232

0.0137

0.00943 0.0095

Single GPU PISTON
Input distribution across GPUs with PISTON
Distributed PISTON on GPUs

Fig. 7. 3D Isosurface Generation: Scaling with the number of NVIDIA
Tesla M2090 GPUs on Moonlight supercomputer

However, the parallel efficiency decreases significantly as the number
of nodes increases, likely due to the all-to-all communication involved
in the scatter operations at the higher levels of the tree. In general,
we have observed that the performance scales well with the number
of nodes for the computations below about the third tree level, but the
time for the first couple of levels usually increases with the number of
nodes. A large amount of data per node is required in order for the
computation gains to outweight the all-to-all communication.

Overall, the results indicate that algorithms with very limited global
communication, such as isosurface computation, can be implemented
very efficiently in the distributed data-parallel programming model.
Algorithms involving a significant amount of all-to-all communica-
tion, such as KD-tree construction, can also be implemented in this
model, although, for a given computational load, communication costs
that grow as the square as the number of processors will eventually
limit the scaling.

5 CONCLUSION

We have shown how the data parallel programming model we previ-
ously demonstrated on multi and many-core architectures on a single
node using Thrust can be extended to operate in distributed memory
and hybrid distributed-shared memory architectures while providing
an almost identical API to the algorithm developer. Algorithmic de-
tails and performance results have been provided for two significantly
different visualization and analysis algorithms, illustrating that a wide
range of algorithms can be implemented in this programming model,
including those with nested data-parallelism, with a level of parallel

Fig. 8. Isosurface at 100C computed across four NVIDIA Quadro 5000
GPUs on our Darwin cluster on a 3600x2400x42 ocean temperature
data set, showing the level of detail available at this resolution with pro-
gressive magnifications along the west coast of North America.
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Fig. 9. 3D KD Tree Construction: Scaling with the number of OpenMP
threads on four AMD Opteron 6168 nodes on Darwin Cluster
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Fig. 10. 3D KD Tree Construction: Scaling with the number of AMD
Opteron 6168 nodes on Darwin Cluster

efficiency commensurate with the nature of the problem. Our ongo-
ing and future work is likely to involve further expanding the scope of
the data-parallel programming model beyond computation of visual-
ization and analysis operators, extending to other performance bottle-
necks such as simulation computations and disk I/O, in order to pro-
vide an integrated end-to-end data-centric programming approach.
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